特殊功能材料
解决方案服务商

EN
新闻中心

天然石墨的纳米结构组装

2018-01-13

天然石墨是重要的战略资源, 中国的石墨储量和产量都居世界首位。天然石墨大多只是应用在相对简单的初加工领域, 据统计, 大部分天然石墨只是作为原料, 用作粉末冶金增碳剂、高温碳质耐火材料、工业金刚石、机械制造润滑材料、印刷墨粉、铅笔制作等等。

石墨具有优异的导电和导热性能, 具有良好的化学和高温稳定性,润滑和涂敷性能优良,是重要的非金属矿物资源。本文在分析石墨微观结构、性能的基础上,综合分析石墨加工改性方法,提出石墨的纳米组装的概念,并提出多种石墨的纳米结构组装方法。

通过纳米结构组装,可以制备成新型石墨功能材料和结构材料,有可能成为新型储能 材料,在新兴的新能源汽车、风力发电、环境治理等行业具有广阔的发展前景和巨大的应用潜力。

1 石墨中碳原子的化学键结构特征

在原子分子水平上, 石墨中碳原子被杂化, 形成sp2杂化轨道, 在XY方向上,碳原子通过共价键相连形成六方环,在平面上成层分布,形成碳原子层。层面内碳原子之间通过共价键结合,电子活性低,但是层面间只有很弱的分子键存在,电子活动性高。这种特殊的结构特征使石墨内部包含丰富的载流子,表现出优异的传导性能,使石墨能够被用做电极材料、润滑材料、传热材料等。

2 石墨的纳米结构组装

可以采用多种方法对石墨进行纳米结构组装: 通过增加功能空间、增加功能粒子,制备新型石墨材料,开发性能良好的石墨制品; 通过制备石墨层间化合物的方法,引入纳米功能粒子组装石墨材料; 通过制备石墨合金方法组装石墨材料; 通过引入缺陷、孔隙结构增加储能空间组装石墨材料; 通过调 节石墨晶体排布方向减少石墨材料的性能异向性, 提高性能均匀性等。

2.1 石墨层间化合物引入纳米功能粒子组装

石墨新材料石墨具有很好的层状结构,层面内碳原子以sp2杂化轨道电子形成的共价键形成牢固的六角网状平面, 碳原子间具有极强的键合能(345 kJ/mol); 而在层间碳原子,则以微弱的范德华力相结合(键能 16.7 kJ/mol)。正因为石墨中层面与层间键合力的巨大差异及微弱的层间结合力,导致多种原子、分子、粒子团可以顺利突破层间键合力,插入层间,形成石墨层间化合物(GICs-GraphiteIntercalationCompounds)。

这些插入物在石墨层内规律排布, 可以形成规则的阶结构和畴结构等(图 1(a))。石墨层间化合物的单层厚度(Identity period)与阶数有关(Ic = d1 + 0.3354(n–1))(图 1(b))。石墨层间化合物可以形成规则的1, 2, 3,…10阶结构,形成的石墨层间化合物可以是受主(acceptor)或施主型(donor)的离子型(Ionic)的插层剂,也可以是共价型 (Covalent)的插层剂(F,O+OH)。在石墨层间化合物中,插层剂可以双插层(binary)、三插层(ternary)或多插层。在石墨层间,插层剂还可以形成局部短程有序的畴结构。

目前已有200多种原子、分子、粒子团能够顺利突破层间键合力插入层间,形成多种石墨层间化合物。通过石墨层间化合物可以引入纳米功能粒子,在石墨微观结构里,实现纳米功能粒子组装,创造和提高石墨储能功能,组装成新的材料,石墨层间化合物不但保留了石墨原有的性能,而且附加了原有石墨和插层物质均不具备的新性能。石墨邦 www.shimobang.cn —国内首家碳石墨电商平台? 插层物 的多少,在石墨层间的排布规律,特别是其阶结构、畴结构等对于石墨层间化合物的性能有决定性作用。

氢的插入有可能使石墨成为储氢材料;锂离子在石墨层间的插入和脱插可以实现充放电,使得石墨成为性能良好的二次电池材料。石墨不仅可以作为二次锂离子电池负极材料,而且可以作为一次电池的正极电池材料,例如作为锂氟电池正极材料、高能碱性电池正极导电材料,以及燃料电池中双极板材料、核能、太阳能(硅的制备)结构材料等。

锂资源紧缺、价格高,可以采用资源更加丰富和廉价的钠离子,通过合成钠的石墨层间化合物, 制备钠离子电池。通过钠离子在石墨层间的插入和脱插实现充放电,从而存储能源。氯化铅插层形成的石墨层间化合物是性能优异的打印墨粉;溴插层形成的石墨层间化合物是性能优异的红外屏蔽材料等; 氯化铁等插层形成的石墨层间化合物对毫米波有良好的衰减性能,有可能成为毫米波遮蔽干扰屏障材料。采用石墨层间化合物可以在石墨碳原子层间引入纳米功能粒子组装石墨材料, 实现石墨的纳米组装,获得优异性能的新材料。

2.2 碳石墨合金方法引入纳米功能粒子组装碳石墨新材料

通过合金方法制备类似于合金的材料, 例如碳石墨合金方法可以改变碳石墨材料的性能。因为碳、硼、氮三种元素在元素周期表中位置靠近,碳原子半径与硼原子、氮原子也相近, 硼、氮也可能替代碳石墨材料结构中的碳原子,形成结构稳定的原子置换型固溶体,但是却可以改变石墨原来的性能。

当硼原子替代碳原子时,可以形成硼碳合金材料(图2),随着硼碳比例不同,调整反应条件,在一定温度压力下,还可以形成 B50C2、B8C、B13C2、B4C、BC3等不同组成的硼碳合金。引入氮原子后, 可以形成B-C-N三元体系,获得更多的硼碳氮合金材料(图3)。



标签:
相关新闻
产品分类
返回列表